U “AI” Testing: User Interface and Usability Testing of a Chest X-ray AI Tool in a Simulated Real-World Workflow

Abstract

Purpose: To observe interactions of practicing radiologists with a chest x-ray AI tool and evaluate its usability and impact on workflow efficiency. Methods: Using a simulated clinical workflow and remote multi-monitor screensharing, we prospectively assessed the interactions of 10 staff radiologists (5–33 years of experience) with a PACS-embedded, regulatory-approved chest x-ray AI tool. Qualitatively, we collected feedback using a think-aloud method and post-testing semi-structured interview; transcript themes were categorized by (1) AI tool features, (2) deployment considerations, and (3) broad human-AI interactions. Quantitatively, we used time-stamped video recordings to compare reporting and decision-making efficiency with and without AI assistance. Results: For AI tool features, radiologists appreciated the simple binary classification (normal vs abnormal) and found the heatmap essential to understand what the AI considered abnormal; users were uncertain of how to interpret confidence values. Regarding deployment considerations, radiologists thought the tool would be especially helpful for identifying subtle diagnoses; opinions were mixed on whether the tool impacted perceived efficiency, accuracy, and confidence. Considering general human-AI interactions, radiologists shared concerns about automation bias especially when relying on an automated triage function. Regarding decision-making and workflow efficiency, participants began dictating 5 seconds later (42% increase, P = .02) and took 14 seconds longer to complete cases (33% increase, P = .09) with AI assistance. Conclusions: Radiologist usability testing provided insights into effective AI tool features, deployment considerations, and human-AI interactions that can guide successful AI deployment. Early AI adoption may increase radiologists’ decision-making and total reporting time but improves with experience.

Publication
In Canadian Association of Radiologists Journal
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.